Skip to main content

Design for Nuclear Plants built on floating platforms


When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects -- specifically, the lack of cooling for the reactor cores, due to a shutdown of all power at the station -- that caused most of the harm.
A new design for nuclear plants built on floating platforms, modeled after those used for offshore oil drilling, could help avoid such consequences in the future. Such floating plants would be designed to be automatically cooled by the surrounding seawater in a worst-case scenario, which would indefinitely prevent any melting of fuel rods, or escape of radioactive material.


The concept is being presented this week at the Small Modular Reactors Symposium, hosted by the American Society of Mechanical Engineers, by MIT professors along with others from MIT, the University of Wisconsin, and Chicago Bridge and Iron, a major nuclear plant and offshore platform construction company.


Such plants could be built in a shipyard, then towed to their destinations five to seven miles offshore, where they would be moored to the seafloor and connected to land by an underwater electric transmission line. The concept takes advantage of two mature technologies: light-water nuclear reactors and offshore oil and gas drilling platforms. Using established designs minimizes technological risks, says professor of nuclear science and engineering (NSE) at MIT.

Although the concept of a floating nuclear plant is not unique -- Russia is in the process of building one now, on a barge moored at the shore -- none have been located far enough offshore to be able to ride out a tsunami. For this new design, "the biggest selling point is the enhanced safety."

A floating platform several miles offshore, moored in about 100 meters of water, would be unaffected by the motions of a tsunami; earthquakes would have no direct effect at all. Meanwhile, the biggest issue that faces most nuclear plants under emergency conditions -- overheating and potential meltdown, as happened at Fukushima, Chernobyl, and Three Mile Island -- would be virtually impossible at sea, Professor says: "It's very close to the ocean, which is essentially an infinite heat sink, so it's possible to do cooling passively, with no intervention. The reactor containment itself is essentially underwater."

List of several other advantages. For one thing, it is increasingly difficult and expensive to find suitable sites for new nuclear plants: They usually need to be next to an ocean, lake, or river to provide cooling water, but shorefront properties are highly desirable. By contrast, sites offshore, but out of sight of land, could be located adjacent to the population centers they would serve. "The ocean is inexpensive real estate.

In addition, at the end of a plant's lifetime, "decommissioning" could be accomplished by simply towing it away to a central facility, as is done now for the Navy's carrier and submarine reactors. That would rapidly restore the site to pristine conditions.

This design could also help to address practical construction issues that have tended to make new nuclear plants uneconomical: Shipyard construction allows for better standardization, and the all-steel design eliminates the use of concrete, which is often responsible for construction delays and cost overruns.

There are no particular limits to the size of such plants. They could be anywhere from small, 50-megawatt plants to 1,000-megawatt plants matching today's largest facilities. "It's a flexible concept,".

Most operations would be similar to those of onshore plants, and the plant would be designed to meet all regulatory security requirements for terrestrial plants. "Project work has confirmed the feasibility of achieving this goal, including satisfaction of the extra concern of protection against underwater attack.
Market for such plants in Asia, which has a combination of high tsunami risks and a rapidly growing need for new power sources. "It would make a lot of sense for Japan," he says, as well as places such as Indonesia, Chile, and Africa

Comments

Popular posts from this blog

Construction Sequence of MEP works in Buildings

Typical Construction Sequence for Mechanical / Electrical / Plumbing Works in High Rise Building Grouping of MEP Fixes like PVC Electrical conduits in Slabs : 1. MEP 1st Fix - All Concealed Items/Pipe Sleeves in Verticals/Horizontals (Column/Slab) 2. MEP 2nd Fix - Stage 1: High Level MEP Works at False Ceiling i) Fixing supports, installation of Firefighting, Chilled Water piping, drainage pipes, water supply(hot & cold), rain water, cable ladders, G.I Conduiting, AC ducting ii) Pressure tests and insulations iii) Installation of FCUs, water heaters (Note: False Ceiling people will fix runners after the Stage 1 of MEP 2nd Fix) 3. MEP 2nd Fix - Stage 2: Clearance for False Ceiling People i) Sprinkler droppers, AC duct droppers, flexible cable for light fixtures, fire stopping and identification works etc. (Note: False Ceiling people will close ceiling tiles and MEP people will connect their diffusers in position on the ceiling tiles - too much coordination is required at

Mivan Shuttering Details

Details of Aluminum Formwork (Mivan / MFE) The most effective means available for the construction of high, medium and low rise mass housing R/C structures. It is a precision-engineered formwork fabricated in Aluminium. Monolithic pouring. Walls, columns, slabs & beam are poured together. Speed - Induces a disciplined & systemized approach to construction, which creates a daily work cycle, the essence of the productivity. The productivity generates a overall work cycle, that can achieve 4/5 day per floor outputs or other cycle times to suit your project requirements. It is flexible in design and can form any architectural or structural configuration, such as stairs, bay windows, curved features, etc. Quality - When struck the aluminium formwork reveals a good quality fair face onto which a 4–5mm skim coat can be applied for a perfect finish eliminating need of plaster. Provides an Integrated Scaffolding reducing the cost of your scaffoldi

List of Top 200 Construction Companies in the world

The world's 200 largest construction companies Position Company Country 2007 Posit ion Change 1 Vinci France 1 - 2 Bouygues' Construction Divisions France 2 - 3 ACS Spain 5 2 4 Bechtel US 3 -1 5 China Rail way Group China 6 1 6 China Rail way Construction Corporation China 23 17 7 Hochtief Germany 4 -3 8 Ferrovial Spain 11 3 9 China Co mmunications Construction Group China 14 5 10 Skanska Sweden 9 -1 11 FCC Spain 25 14 12 China Stat e Construction & Engineering (CSCEC) China 13 1 13 Eiffage France 21 8 14 Kajima Co rporation Japan 8 -6 15 Fluor US 17 2 16 Strabag S E Austria 22 6 17 Taisei Cor poration Japan 10 -7 18